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Amin Gholami, Student Member, IEEE, and Xu Andy Sun, Senior Member, IEEE

Abstract—High penetration of distributed energy resources
(DERs) is transforming the paradigm in power system operation.
The ability to provide electricity to customers while the main
grid is disrupted has introduced the concept of microgrids (µGs)
with many challenges and opportunities. Emergency control of
dangerous transients caused by the transition between the grid-
connected and island modes in µGs is one of the main challenges
in this context. To address this challenge, this paper proposes
a comprehensive optimization and real-time control framework
for maintaining frequency stability of multi-µG networks under
an islanding event and for achieving optimal load shedding
and network topology control with AC power flow constraints.
The paper also develops a strong mixed-integer second-order
cone programming (MISOCP)-based reformulation and a cutting
plane algorithm for scalable computation. We believe this is
the first time in the literature that such a framework for
multi-µG network control is proposed, and its effectiveness is
demonstrated with extensive numerical experiments.

Index Terms—Islanding, microgrid, mixed-integer second or-
der cone programming, resilience, under frequency load shed-
ding.

I. INTRODUCTION

M ICROGRIDS (µGs), as building blocks of smart distri-
bution grids, provide a unique infrastructure for inte-

grating a wide range of distributed energy resources (DERs)
with different static and dynamic characteristics. They are able
to operate in island mode and energize a portion of the grid
while the main grid is down. This islanding capability of µGs
is highly beneficial for both customers and electric utilities,
especially in areas with frequent electrical outages. Although
dynamic islanding is one of the basic objectives of building a
µG, IEEE Std. 929-2000 [1] and IEEE Std. 1547.7-2013 [2]
mandate that DERs shall detect the unintentional island mode
and cease to energize the grid within two seconds, mainly due
to safety concerns as well as complying with conventional
control/protection schemes. Operation of DERs during inten-
tional islanding has also been under consideration for future
revisions of IEEE Std. 1547. Based on the current practices
and standards, blackouts in µGs seem inevitable in the event
of islanding (especially an unscheduled islanding which may
occur subsequent to detection of abnormal conditions at the
interconnection(s)).

Intuitively, the disconnection of DERs is not an ideal
solution, particularly in a restructured environment where
electric utilities compete to provide a more reliable service
to customers. In this context, a recent draft standard for
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interoperability of DERs in 2017 has provided some guidance
on scheduled and unscheduled islanding processes [3]. This
draft standard defines an intentional local island as any portion
of the grid that is totally within the bounds of a local power
grid (e.g., a µG), and further states that DERs may have to
adjust several settings which shall be enabled only when the
intentional island is isolated from the main grid. This standard
calls for adaptive protection and control schemes to be used
in such circumstances. Our paper is motivated by this need,
and is aimed at providing a practical solution to the islanding
process in modern distribution networks which are comprised
of multiple µGs, referred to as multi-microgrid (multi-µG)
networks.

In a similar vein, [4]–[6] acknowledge that the current
practice of disconnecting DERs following a disturbance is no
longer a reliable solution. Specifically, reference [4] proposes
an under frequency load shedding (UFLS) scheme to be used
subsequent to islanding in a distribution system. This scheme
sheds an optimal number of loads based on a set of criteria
including frequency, rate of change of frequency, customers’
willingness to pay, and load histories. The authors in [5] in-
vestigate autonomous operation of a distribution system as an
individual µG. The paper demonstrates the transient behavior
of such a µG due to preplanned and unplanned islanding pro-
cesses. The authors also emphasize that future studies should
develop control strategies/algorithms for multiple electroni-
cally interfaced DERs to achieve optimum response in terms
of stability. In [6], a controller for distributed generation (DG)
inverters is designed for both grid-connected and intentional
islanding modes. Moreover, an islanding-detection algorithm
is developed in order to switch between the two modes.

On the other hand, the operation of multi-µGs has been
studied in the literature from different perspectives, such
as their on-line dynamic security assessment [7], interactive
control for guaranteed small signal stability [8], transient
stability assessment [9], electricity market operator design
[10], hierarchical outage management [11], and self-healing
[12] to name a few.

In this paper, we propose a novel framework for the re-
silient operation of multi-µG networks after a scheduled or
unscheduled islanding in a distribution system. The framework
is strategically designed in two parts. In the first part, we
develop a near real-time decision support tool which is used
to determine the optimal reconfiguration of the multi-µG net-
work, cooperation between µGs (sharing their resources), new
operating point of dispatchable DERs, and emergency load
curtailments (if necessary). The second part of the framework
pertains to the real-time monitoring and control of multi-
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µGs based on the outcomes of the decision support tool. The
present paper is a significant extension to our recent work [13]
on a single µG operation. Specifically, the main contributions
of this paper are summarized below.
• We formulate the real-time resilient operation, including

optimal power flow, optimal load shedding, and optimal
topology reconfiguration, of a multi-µG network as a
mixed-integer nonlinear programming (MINLP) problem.
Then, we propose a mixed-integer second order cone pro-
gramming (MISOCP) relaxation to this problem, which
considerably improves the computational efficiency of
our control framework and renders it scalable in practical
systems.

• We derive necessary constraints for keeping the nadir
and steady state frequency of the network within the
permissible ranges, and introduce a new reformulation
for frequency limitation constraints. This reformulation
implicitly guarantees the frequency stability of the net-
work after dangerous transients such as islanding.

• We develop a set of valid inequalities and a separation
scheme for incorporating the frequency constraints in the
operation of a multi-µG network, and based on that,
we establish a cutting-plane approach to eliminate the
frequency violations in a computationally effective way.

The rest of our paper is organized as follows. Section II
introduces a resilient multi-µG network and gives an overview
of the proposed scheme. The frequency response of multi-µGs
to an islanding process is discussed in Section III. In Section
IV, a basic MINLP model for the real-time resilient operation
of multi-µGs is presented. Section V is devoted to solution
methodology, including the MISOCP relaxation and cutting
plane algorithm. Section VI exhibits the efficiency of the novel
approach using an illustrative case study, and finally, the paper
concludes with Section VII.

II. RESILIENT OPERATION OF MULTI-µGS

A. Structure of a Multi-µG Network

A distribution network may experience a scheduled is-
landing due to several reasons such as enhanced reliability,
economic dispatch decisions for self-supply, pre-emptive ac-
tion prior to inclement weather, etc. Moreover, unscheduled
islanding happens subsequent to the detection of abnormal
conditions at the interconnection(s) [3]. In either case, the dis-
tribution system can be further partitioned into multiple µGs,
thereby improving the resilience of the system. Fig. 1 depicts
a distribution network under such circumstances. As can be
seen in this example, the distribution network is composed
of four µGs, where each µG is connected to the rest of the
system through the point of common coupling (PCC). Note
that µGs in a multi-µG network are commonly integrated via
voltage-source-converter-(VSC)-based interfaces at the PCC,
and the behavior of each µG is characterized by the control
scheme of its interface [14]. PCCs are commonly equipped
with intelligent electronic devices (IEDs) with synchrophasor
capability [7]. A communication network connects the IEDs
to the distribution management system (DMS). Note that
the resilience of this communication infrastructure (notably
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Figure 1. Schematic diagram of a distribution system under islanding. (a)
Multi-µG network. (b) Linking grid.

during an unscheduled outage) is of paramount importance to
operators’ situational awareness.

In Fig. 1(a), a set of buses (white fill in the figure), namely
linking buses, are not categorized to any µG. Additionally, the
lines (dashed/dotted in Fig. 1(a), or equivalently l1 to l5 in Fig.
1(b)) between such buses, namely linking lines, are equipped
with switching relays, enabling various configurations for the
multi-µG network. This portion of the distribution network
that consists of the linking buses and linking lines is called
the linking grid. Fig. 1(b) illustrates the linking grid associated
with the multi-µG network of Fig. 1(a). Finally, the buses by
which each µG is connected to the linking grid (gray fill in
the figure) are called boundary buses.

B. Overview of the Proposed Resilient Operation Scheme

The general framework of the proposed resilience manage-
ment scheme is illustrated in Fig. 2. This framework can be
divided into two stages: i) near real-time decision support
tool, and ii) real-time monitoring and control. In the first
stage, the distribution system operator (DSO) leverages the
state estimation (SE) module and obtains the input parameters
of an optimization model. These data include the gener-
ation/consumption level of DERs/Loads, real and reactive
power exchange at PCCs, and the status of the circuit breakers
(i.e., network topology). Subsequently, the optimization model
is solved and the following resilient operation strategies are
determined: optimal configuration of the linking network,
cooperation between µGs (sharing their DERs), new operating
point of dispatchable DERs, and emergency load curtailments
(if necessary). Note that the frequency limitations of the
system are embedded in the optimization model to ensure
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Figure 2. The general framework of the proposed resilient operation approach.

the frequency stability of multi-µGs following the islanding
event. In the next step, a look-up table is generated based on
the results of the optimization model. On the other side, in
the second stage, the status of the main circuit breaker (i.e.,
the islanding status of the distribution network) is monitored
using indication data. If an unscheduled/scheduled islanding
happens, the pre-specified strategies will be implemented in
the multi-µG network.

The principal focus of this paper is on the first stage
(left-hand side of Fig. 2), i.e., developing a near real-time
decision support tool that will be thoroughly discussed in
the following sections. The second stage (right-hand side of
Fig. 2) corresponds to the mechanisms for implementing such
decisions. The details of these mechanisms, which are enabled
by synchrophasor technology, go beyond the scope of this
paper.

III. FREQUENCY RESPONSE OF MULTI-µGS SUBSEQUENT
TO ISLANDING

In this section, we will derive the steady-state and nadir
frequencies of a multi-µG network subsequent to an imbalance
between real power generation and consumption. Later in
Section IV-E, we will use these two metrics to construct our
proposed frequency constraints, ensuring that they will remain
in the permissible range during the transition between the grid-
connected and island modes.

A. Inertial Response

As mentioned earlier, µGs in a multi-µG network are
integrated via VSC-based interfaces at the PCC. Meanwhile,
VSC-based interfaces are controlled in such a way that they
emulate the behavior of conventional synchronous machines
[9]. Inspired by this fact, let us first focus on inertial response
of µGs. Suppose M is the set of all µGs in the multi-
µG network. The artificial swing equation describes the inertial
frequency dynamics of each m ∈M,

d∆ωm
dt

=
1

2Hm

(
∆PMm −∆PEm

)
, (1)

where ∆ωm is the frequency deviation in p.u.; Hm is the
artificial inertia constant in seconds; ∆PMm and ∆PEm are the
mechanical and electrical power deviations in p.u., respec-
tively. Based on (1), modeling interconnected µGs can be
realized by the so-called aggregation method [15]. Without
loss of generality, we assume that for each m ∈M, equation
(1) is per-unitized based on a common power, SBase. We
define the center of inertia (COI) frequency as

ωCOI :=

∑
m∈M

Hmωm∑
m∈M

Hm
. (2)

Proposition 1. The swing equation of a fictitious equivalent
generator whose frequency is equal to ωCOI has the same
form as

d∆ωCOI
dt

=
1

2Ha

(
∆PMa −∆PEa

)
, (3)

where Ha, ∆PMa , and ∆PEa are defined below

Ha :=
∑
m∈M

Hm, (4)

∆PMa :=
∑
m∈M

∆PMm , ∆PEa :=
∑
m∈M

∆PEm . (5)

Proof. A complete proof of this basic result cannot be easily
located in the literature. Therefore, we provide one here.
Consider a small deviation from the initial value in (2), i.e.,
∆ωCOI := ωCOI − ω0

COI and ∆ωm := ωm − ω0
m, and take

derivative of its both sides with respect to t:

d∆ωCOI
dt

=

∑
m∈M

Hm
d∆ωm
dt∑

m∈M
Hm

. (6)

Then, re-arrange (1) as

Hm
d∆ωm
dt

=
1

2

(
∆PMm −∆PEm

)
. (7)

Now substitute (7) in (6), as

d∆ωCOI
dt

=

∑
m∈M

1
2

(
∆PMm −∆PEm

)
∑

m∈M
Hm

. (8)

With the definition of (4)-(5), we get (3).

In the rest of the paper, the COI frequency is simply denoted
by ω instead of ωCOI .

B. Droop Response

Now we construct the aggregated system frequency re-
sponse (SFR) model of a multi-µG network as depicted in
Fig. 3. In this model, the transfer function 1

2Has+D
in the

forward path represents the swing equation (3) as well as the
frequency-dependent behavior of the loads which is lumped
into a single damping constant D. In this paper, this damping
constant D is assumed to remain unchanged while aggregating
different µGs. Different feedback loops in Fig. 3 model the
contribution of each µG to the droop control of the multi-
µG network [15]. For each m ∈M, Rm is the droop constant
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Figure 3. Block diagram of the aggregated SFR model.

of the VSC; Tm and T ′m are the corresponding time constants.

In general, the order of this SFR model is |M| + 1.
In particular, however, we are interested in the steady state
and nadir outputs of the SFR model. It can be shown that
the steady state output of this general-order model is not a
function of the time constant T ′m. Moreover, the results of
a sensitivity analysis on the parameters of a similar SFR
model confirms that the nadir frequency is less sensitive to
T ′m [16]. Accordingly, we assume identical values of T ′m for
all µGs in the multi-µG network, i.e., T ′ := T ′m,∀m ∈ M.
Consequently, the transfer function of the aggregated SFR
model can be written as (9), with the additional parameters
defined in (10):

H(s) =
1 + T ′s

2HaT ′ (s2 + 2ξωns+ ω2
n)
, (9)

ωn :=

√
D + 1/Ra

2HaT ′
, ξ :=

2Ha + T ′D +Ka

2
√

2HaT ′ (D + 1/Ra)
, (10a)

1

Ra
:=

∑
m∈M

1

Rm
,Ka :=

∑
m∈M

Tm
Rm

, (10b)

where ∆Pa(s) is the disturbance power in the multi-µG.

C. Steady State and Nadir Frequencies at COI
In general, the dynamic behavior of the aggregated SFR

model can be described by two parameters ξ and ωn. If
ξ = 0, we will have an oscillatory system where the transient
response will not die out. If ξ ∈ (0, 1), the transient frequency
response is oscillatory (under-damped). When ξ = 1, we are in
the critically-damped condition, and finally, if ξ ∈ (1,+∞),
the frequency response will be over-damped. We shall now
analyze the frequency response of the system to the unit-step
input, i.e., ∆Pa(s) = 1/s for three cases: the under-damped,
critically-damped, and over-damped cases.

Proposition 2. In the under-damped case, the steady state and
nadir COI frequencies of a multi-µG network after a unit-step
disturbance can be obtained by (11) and (12), respectively,
i.e.,

∆ω(tss) =
1

D + 1/Ra
, (11)

∆ω
(
tN
)

=
1

D + 1/Ra

(
1 +

√
T ′ −RaKa

2HaRa
e−ξωnt

N

)
,

(12)

where tN in (12) can be calculated as follows:

tN =


1
ωr

(
π − tan−1

(
ωrT

′

1−ξωnT ′

))
, if ξωnT ′ < 1,

π
2ωr

, if ξωnT ′ = 1,
1
ωr

(
tan−1

(
ωrT

′

ξωnT ′−1

))
, if ξωnT ′ > 1.

(13)
Additionally, in the critically-damped and over-damped cases,
the nadir COI frequency is equal to the steady state COI
frequency, and both can be calculated according to (11).

Proof. In the under-damped case, the poles of the system are
s1,2 = −ξωn ± jωr, where ωr = ωn

√
1− ξ2 is the damped

natural frequency and j =
√
−1 is the imaginary unit. In this

case, the unit-step response is

∆ω(t) =
1

2HaT ′

( 1

ω2
n

+
e−ξωnt

ωr

(
T ′ sin(ωrt)

− 1

ωn
sin(ωrt+ φ)

))
.

(14)

where φ := tan−1(

√
1−ξ2
ξ ). By definition, the steady state

frequency is equal to ∆ω(tss) := lim
t→+∞

∆ω (t), which leads
to (11). The time when the frequency nadir happens (when
the lowest frequency is reached before the frequency starts
to recover) can be calculated by solving the optimization
problem tN := min{t : d∆ω(t)

dt = 0, t ∈ R++}. The closed-
form solution to this problem is equal to (13). Additionally.
substitution of tN in (14) yields (12). Observe that when
the two poles of the transfer function (9) are nearly equal,
i.e., s1,2 = −ωn, the system is approximated by a critically-
damped one. Moreover, in the over-damped case, the two
poles of the transfer function are negative real and unequal,
i.e., s1,2 = −ξωn ± ωn

√
ξ2 − 1. In the last two cases, no

overshoot or undershoot is observed in the transient response
of the system, and consequently, the nadir frequency is equal
to the steady state frequency which is identical to (11).

The interested reader is referred to Proposition 3 in [17] for
similar results under different settings. Now we are ready to
adopt the steady-state and nadir frequencies at COI in order
to build our optimization model for the resilient operation of
a multi-µG network.

IV. RESILIENT OPERATION PROBLEM FORMULATION

Consider a linking grid Ñ = (B̃, L̃), where B̃ and L̃ denote
the set of linking buses and linking lines, respectively. We
assume that the distribution network under study is comprised
of a set of µGs, i.e., m ∈M, where each µG is modeled as a
disjoint network Nm = (Bm,Lm). Without loss of generality,
we assume only one PCC for each µG, and the corresponding
boundary bus is denoted by B̂. In this section, we aim to
introduce an optimization model which is able to determine
the optimal resilience improvement strategy, including optimal
load shedding and network topology control with AC power
flow, in the wake of a scheduled/unscheduled islanding in a
multi-µG network. Our model is formulated as follows.
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A. Objective Function

The objective function (15) is to minimize the total load
shedding cost in all µGs:

min
∑
m∈M

∑
i∈Bm

λV OLLmi (1− xmi) p̄Dmi, (15)

where λV OLLmi is the value of lost load (VOLL) in µG m
and bus i; p̄Dmi is the pre-islanding active power consumption
obtained from state estimation (SE); and xmi is a binary
variable indicating the status of such a load after islanding
happens.

B. Real-Time AC Power Flow Limitations in µGs

The set of constraints (16)-(25) which are defined for each
m ∈ M guarantee the AC power flow security of each
µG after the islanding event. Let Gmij and Bmij be the
conductance and susceptance of line (i, j) in µG m; and
fPmij and fQmij be the active and reactive flow of that line.
Additionally, let pGmg and qGmg be the active and reactive power
output of DER g in µG m; and similarly, pDmi and qDmi be the
active and reactive power consumption of the load at bus i in
µG m. We define Vmi and θmi as the voltage magnitude and
angle of bus i in µG m. Finally, ∆Pm and ∆Qm denote the
active and reactive power exchange between the µG m and
the linking grid (through the VSC). Based on this notation,
constraints (16) and (17) model the active and reactive power
balance within each µG. Similarly, constraints (18) and (19)
are related to the active and reactive power balance at the
boundary buses. Note that O in these equations is the mapping
of the set of DERs into the set of buses. The set of equations
(20)-(23) constitute the AC power flow equations, line flow
limits, and voltage bounds in each µG. Finally, active and
reactive power demands at different buses are modeled by
the voltage-dependent ZIP model (24) and (25), where κPI ,
κPC , and κPP denote the coefficients of constant impedance,
constant current, and constant power terms in active power
loads, respectively. These coefficients are defined in the same
way for reactive power loads.∑

g:(g,i)∈Om

pGmg − xmipDmi =
∑

(i,j)∈Lm

fPmij ,∀i ∈ Bm (16)

∑
g:(g,i)∈Om

qGmg − xmiqDmi =
∑

(i,j)∈Lm

fQmij ,∀i ∈ Bm (17)

∑
g:(g,i)∈Om

pGmg − xmipDmi + ∆Pm =
∑

(i,j)∈Lm

fPmij ,∀i ∈ B̂m

(18)

∑
g:(g,i)∈Om

qGmg − xmiqDmi + ∆Qm =
∑

(i,j)∈Lm

fQmij ,∀i ∈ B̂m

(19)

fPmij = Gmij

(
V 2
mi − VmiVmj cos (θmi − θmj)

)
−BmijVmiVmj sin (θmi − θmj) , ∀ (i, j) ∈ Lm

(20)

fQmij = −Bmij
(
V 2
mi − VmiVmj cos (θmi − θmj)

)
−GmijVmiVmj sin (θmi − θmj) ,∀ (i, j) ∈ Lm

(21)

fPmij + fPmji ≤ fmax
mij , ∀(i, j) ∈ Lm (22)

V min
mi ≤ Vmi ≤ V max

mi , ∀i ∈ (Bm ∪ B̂m) (23)

pDmi =pDmi

(
κPImiV

2
mi + κPCmi Vmi + κPPmi

)
,∀i ∈ (Bm ∪ B̂m)

(24)

qDmi =qDmi

(
κQImiV

2
mi + κQCmi Vmi + κQPmi

)
,∀i ∈ (Bm ∪ B̂m).

(25)

C. Real-Time AC Power Flow Limitations in the Linking Grid
Similarly, this group of constraints are associated with the

AC power flow limitations of the linking grid. Here, line
switching is available, therefore, Zmk is a binary variable
indicating the status of the linking line (m, k). It is worth
mentioning that connection/disconnection of µGs to the link-
ing grid is performed through the switchgear located at PCCs
and line switching in the linking grid is commonly available
through the distribution automation switches and isolators
[7]. Let Mmk be a sufficiently large positive number. In
these constraints, in terms of notation, we use tilde over the
variables and parameters to make the difference between the
linking grid and the rest of the distribution grid. In particular,
equations (26) and (27) model the active and reactive power
balance at external buses. The group of constraints (28)-(35)
are associated with the AC power flow equations (where the
lines are allowed to be switched on and off), line flow limits,
and voltage bounds in the linking grid.

−∆Pm =
∑

(m,k)∈L̃

f̃Pmk, ∀m ∈M (26)

−∆Qm =
∑

(m,k)∈L̃

f̃Qmk, ∀m ∈M (27)

−f̃Pmk + G̃mk

(
Ṽ 2
m − ṼmṼk cos(θm − θk)

)
− B̃mkṼmṼk sin(θm − θk)

+ (1− Zmk)Mmk ≥ 0, ∀(m, k) ∈ L̃

(28)

−f̃Pmk + G̃mk

(
Ṽ 2
m − ṼmṼk cos(θm − θk)

)
− B̃mkṼmṼk sin(θm − θk)

− (1− Zmk)Mmk ≤ 0, ∀ (m, k) ∈ L̃

(29)

−f̃Qmk − B̃mk
(
V 2
m − ṼmṼk cos(θm − θk)

)
− G̃mkṼmṼk sin(θm − θk)

+ (1− Zmk)M ′mk ≥ 0, ∀ (m, k) ∈ L̃

(30)

−f̃Qmk − B̃mk
(
V 2
m − ṼmṼk cos(θm − θk)

)
− G̃mkṼmṼk sin(θm − θk)

− (1− Zmk)M ′mk ≤ 0, ∀ (m, k) ∈ L̃

(31)
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−f̃P,max
mk Zmk ≤ f̃Pmk ≤ f̃

P,max
mk Zmk, ∀ (m, k) ∈ L̃ (32)

−f̃Q,max
mk Zmk ≤ f̃Qmk ≤ f̃

Q,max
mk Zmk, ∀ (m, k) ∈ L̃ (33)

f̃Pmk + f̃Pkm ≤ f̃
P,Loss,max
mk , ∀ (m, k) ∈ L̃ (34)

Ṽ min
m ≤ Ṽm ≤ Ṽ max

m , ∀i ∈ B̃, m ∈M. (35)

D. DER Output Limitations and Binary Variable Declaration

Finally, (36)-(39) pertain to the limitations on the output
of the generators and the declaration of binary variables. In
these constraints, RD, RU , and pG,0 are the ramp-down,
ramp-up, and pre-islanding active power generation of DERs,
respectively.

−RDmg ≤ pGmg − pG,0mg ≤ RUmg, ∀g ∈ Gm,m ∈M (36)

pG,min
mg ≤ pGmg ≤ pG,max

mg , ∀g ∈ Gm,m ∈M (37)

qG,min
mg ≤ qGmg ≤ qG,max

mg , ∀g ∈ Gm,m ∈M (38)

x ∈ {0, 1}|M|×|B∪B̂| , Z ∈ {0, 1}|L̃| . (39)

E. Frequency Constraints and Reformulation

In Section III, we developed the steady-state and nadir
frequencies of a multi-µG network subsequent to an imbalance
between real power generation and consumption. Indeed, these
are two important metrics which are employed to ensure the
frequency security of the network. Therefore, we aim to keep
these two metrics within the permissible range while the multi-
µG network moves from the grid-connected mode to the
island mode. Note that subsequent to the islanding process,
the distribution network might be partitioned into different
components (each component might include one or more µGs),
and the frequency security limitations must be met for each
component separately. We propose the following constraints
for ensuring the frequency security of the multi-µG network
for each S ⊆ Ñ ,S 6= ∅:

∆ωmin
N ≤ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

+ IM (S is connected) + IM (S is isolated) , (40a)

∆ωmax
N ≥ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

−IM (S is connected)− IM (S is isolated) , (40b)

∆ωmin
ss ≤ βS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

+ IM (S is connected) + IM (S is isolated) , (40c)

∆ωmax
ss ≥ βS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

−IM (S is connected)− IM (S is isolated) , (40d)

where IM is the indicator function whose value is equal to 0 if
the condition is satisfied, and equal to a sufficiently large num-
ber, otherwise. Moreover, αS and βS are the nadir and steady
state values of the unit-step frequency response, which are
calculated in (12) and (11), respectively. The use of subscript
S in these two parameters emphasizes that they should be
calculated for each S ⊆ Ñ , that is, the associated parameters
Ha, Ra, and Ka are obtained by (4) and (10b), where
m ∈ M is replaced by m ∈ B̃S . Note that ∆ωmin

N /∆ωmax
N

and ∆ωmin
ss /∆ωmax

ss denote the lower/upper bound on the nadir
and steady state frequencies, respectively. Moreover, ∆P 0

m

denotes the pre-islanding power exchange between µG m and
the linking grid. In (40), the first term on the right-hand side
of the inequities is indeed the multiplication of the unit-step
response by the post-islanding net power mismatch (i.e., pre-
islanding power exchange minus the amount of post-islanding
load shedding). Let us further investigate these frequency
security constraints by defining

L̃(S) := {(m, k) ∈ L̃ : m, k ∈ B̃S , m > k}, (41a)

δ(S) := {(m, k) ∈ L̃ : m ∈ B̃S , k /∈ B̃S , m > k}. (41b)

Given a subgraph S of Ñ , L̃(S) in (41a) denotes the set of
edges in the subgraph S, i.e., the set of edges in L̃ whose
both ends are in B̃S . Additionally, (41b) describes the cutset
δ(S), i.e., the set of edges that have exactly one end in B̃S .
Now, we will provide an equivalent reformulation for (40)
using a spanning tree characterization. This reformulation will
help us verify the frequency constraints in each connected
component of the grid. It also provides new insights into the
way we interpret the frequency constraints. We will focus on
the inequality (40a); (40b)-(40d) can be similarly analyzed.

Proposition 3. Inequality (40a) is equivalent to (42a), that is,

∆ωmin
N ≤ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(1− xmi) pDmi
)

+ min {0 : (43a)− (43d)}+
∑

(m,k)∈δ(S)

(Zmk)MN ,

∀S ⊆ Ñ ,S 6= ∅ (42a)

where
umk ≤ Zmk, ∀(m, k) ∈ L̃(S), (43a)∑
(m,k)∈L̃(S)

umk = |B̃S | − 1, (43b)

∑
(m,k)∈δ(S)

umk ≥ 1, ∀S ⊆ Ñ ,S 6= ∅, Ñ , (43c)

umk ∈ {0, 1} , ∀(m, k) ∈ L̃(S). (43d)

Proof. The minimization problem embedded in (42a) has an
optimal value equal to 0 if there exists an spanning tree in S.
Otherwise, the problem is infeasible and the objective value
will be equal to +∞, making (42a) redundant. Here, we use
the definition of a tree as a connected graph containing n− 1
edges (n is the number of nodes in the graph). Accordingly,
(43a) ensures that the spanning tree is a subgraph of S.
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Additionally, (43b) and (43c) guarantee that the spanning tree
has |B̃S | − 1 edges and satisfies the connectivity requirement,
respectively. Finally, the last term in (42a) ensures that S is a
component.

Note that both (40) and their reformulation in the form
of (42a) have an exponential number of constraints. We will
propose a cutting-plane approach to deal with this issue in
Section V.

F. Overall MINLP Formulation

Before passing to solution methodology of the problem,
let us review the overall MINLP formulation of the multi-
µG resilient operation problem. The decision variables of this
formulation are: i) the status of loads (xmi); ii) the status of
linking lines (Zmk); iii) active and reactive flow of lines (fPmij ,
fQmij , f̃

P
mk, f̃Qmk); iv) active and reactive power of DERs and

loads (pGmg , qGmg , pDmi, q
D
mi); v) voltage magnitudes and angles

(Vmi, θmi); vi) active and reactive power exchange between
the µGs and the linking grid (∆Pm, ∆Qm); and vii) spanning
tree variable (umk). For the sake of brevity, let X be the set of
constraints (16)-(39) and let F represent the set of constraints
in (40). Now, we introduce MINLP(X ,F) as follows:

ϑ = min
∑
m∈M

∑
i∈Bm

λV OLLmi (1− xmi) p̄Dmi

s.t. (16)-(40).

V. SOLUTION METHODOLOGY

The formulationMINLP(X ,F) is a nonconvex nonlinear
optimization problem. Moreover, the developed frequency
limitations in (40) as well as their equivalent reformulations in
(42a) induce exponentially many constraints. In this section,
we will address these challenges.

A. MISOCP Reformulation and Convexification

Observe that all the nonlinearity and nonconvexity
of MINLP(X ,F) stem from three sources: i) the
nonlinear terms V 2

mi, VmiVmj cos (θmi − θmj), and
VmiVmj sin (θmi − θmj) in constraints (20)-(21) and also
the similar terms in (28)-(31), ii) the quadratic term V 2

mi

in constraints (24)-(25), iii) the bilinear terms xmip
D
mi and

xmiq
D
mi in constraints (16)-(19) and (40). In this section, we

will convexify/linearize the aforementioned terms, leading to
an MISOCP relaxation of the multi-µG resilient operation
problem.

1) MISOCP Relaxation of AC Power Flow Equations:
Based on the recent development in SOCP relaxation of
standard AC-OPF [18], we define the following auxiliary
variables for each (i, j) ∈ Lm and m ∈M:

Cmij := VmiVmj cos (θmi − θmj) , (44a)
Smij := VmiVmj sin (θmi − θmj) . (44b)

Observe that (44) implies (45), that is

C2
mij + S2

mij = CmiiCmjj , (45a)

Smij = −Smji, Cmij = Cmji. (45b)

Similarly, we define C̃mk := ṼmṼk cos(θm − θk) and S̃mk =
ṼmṼk sin(θm − θk) for each (m, k) ∈ L̃, and the following
constraints will be inferred:

C̃2
mk + S̃2

mk = C̃mmC̃kk, (46a)

S̃mk = −S̃km, C̃mk = C̃km. (46b)

Note that the convex relaxation of (45a) and (46a) are:

C2
mij + S2

mij ≤ CmiiCmjj , (47a)

C̃2
mk + S̃2

mk ≤ C̃mmC̃kk. (47b)

With a change of variables for each m ∈M and (i, j) ∈ Lm,
constraints (20) and (21) can be written as

fPmij = Gmij

(
Cmii − Cmij

)
−BmijSmij , (48a)

fQmij = −Bmij
(
Cmii − Cmij

)
−GmijSmij , (48b)

and the voltage bound (23) for each m ∈ M and i ∈ (Bm ∪
B̂m) is transformed into

(V min
mi )2 ≤ Cmii ≤ (V max

mi )2. (49)

Likewise, a change of variables for each (m, k) ∈ L̃ leads to
the constraints (50) as the counterparts of (28)-(31):

− f̃Pmk + G̃mk

(
C̃mm − C̃mk

)
− B̃mkS̃mk (50a)

+ (1− Zmk)Mmk ≥ 0,

− f̃Pmk + G̃mk

(
C̃mm − C̃mk

)
− B̃mkS̃mk (50b)

− (1− Zmk)Mmk ≤ 0,

− f̃Qmk − B̃mk
(
C̃mm − C̃mk

)
− G̃mkS̃mk (50c)

+ (1− Zmk)M ′mk ≥ 0,

− f̃Qmk − B̃mk
(
C̃mm − C̃mk

)
− G̃mkS̃mk (50d)

− (1− Zm,k)M ′mk ≤ 0,

and similarly the voltage bound (35) for each m ∈ M and
i ∈ B̃ can be written as:

(Ṽ min
m )2 ≤ C̃mm ≤ (Ṽ max

m )2. (51)

2) MISOCP Relaxation of ZIP Load Models: Using the
SOCP auxiliary variables defined in Section V-A1, the ZIP
load models (24) and (25) can be written as (52) for each
m ∈M and i ∈ (Bm ∪ B̂m), that is

pDmi = pDmi

(
κPImiCmii + κPCmi

√
Cmii + κPPmi

)
, (52a)

qDmi = qDmi

(
κQImiCmii + κQCmi

√
Cmii + κQPmi

)
. (52b)

The convex relaxation of these two constraints can be written
as

pDmi

(
κPImiCmii + κPCmi

√
Cmii + κPPmi

)
− pDmi ≥ 0, (53a)

qDmi

(
κQImiCmii + κQCmi

√
Cmii + κQPmi

)
− qDmi ≥ 0. (53b)

Since the variable Cmii is bounded by the closed interval
[Cmin
mii , C

max
mii ], the convex relaxation (53) can be tighten by
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introducing the following two hyperplanes which pass through
the end points for each i ∈ (Bm ∪ B̂m) and m ∈M:

pDmi − p
D,min
mi ≥ pD,max

mi − pD,min
mi

Cmax
mii − Cmin

mii

(
Cmii − Cmin

mii

)
, (54a)

qDmi − q
D,min
mi ≥ qD,max

mi − qD,min
mi

Cmax
mii − Cmin

mii

(
Cmii − Cmin

mii

)
. (54b)

Proposition 4. Constraints (53a) and (53b) are SOCP repre-
sentable in terms of C2

mii.

Proof. We focus on constraint (53a); constraint (53b) is sim-
ilarly analyzed. First, we rearrange and square both sides of
the constraint for each i ∈ (Bm ∪ B̂m) and m ∈M such that

κPCmi
√
Cmii ≥

pDmi
pDmi
− κPImiCmii − κPPmi (55)

(
κPCmi

)2
Cmii ≥

(
pDmi
pDmi
− κPImiCmii − κPPmi

)2

. (56)

Note that Cmii = (Cmii+1
2 )2 − (Cmii−1

2 )2, therefore (56)
can be written as the following SOCP constraint for each i ∈
(Bm ∪ B̂m) and m ∈M:

(
κPCmi

)2(Cmii + 1

2

)2

≥
(
κPCmi

)2(Cmii − 1

2

)2

+

(
pDmi
pDmi
− κPImiCmii − κPPmi

)2

.

(57)

3) Linearizion of the Bilinear Terms: Finally, let us lin-
earize the bilinear terms xmipDmi and xmiqDmi in (16)-(19) and
(40), where each bilinear term involves the product of a binary
variable and a nonnegative continuous variable. We linearize
these disjunctive terms via the big-M method by introduc-
ing auxiliary semi-continuous variables ρmi := xmip

D
mi and

σmi := xmiq
D
mi and defining additional constraints for each

i ∈ (Bm ∪ B̂m) and m ∈M:

− (1− xmi) M̌p
mi ≤ ρmi − p

D
mi ≤ M̌

p
mi (1− xmi) , (58a)

− xmiM̌p
mi ≤ ρmi ≤ M̌

p
mixmi, (58b)

− (1− xmi) M̌q
mi ≤ σmi − q

D
mi ≤ M̌

q
mi (1− xmi) , (58c)

− xmiM̌q
mi ≤ σmi ≤ M̌

q
mixmi. (58d)

In order to reduce the integrality gap in (58), the big-Ms
(i.e., M̌p

mi and M̌q
mi) should be as small as possible, and it is

usually challenging to determine correct values for them to use
for each specific implementation. However, in this particular
application, we can set M̌p

mi = pDmi and M̌q
mi = qDmi. Note

that these data (i.e., the upper bounds of active and reactive
loads) are usually available in any system. Now, substituting
the auxiliary variables ρmi and σmi into the constraints (16)-
(19), we get the linear constraints (59a)-(59b) for each m ∈
M, i ∈ Bm, and also the constraints (59c)-(59d) for each
m ∈M, i ∈ B̂m:∑

g:(g,i)∈Om

pGmg − ρmi =
∑

(i,j)∈Lm

fPmij , (59a)

∑
g:(g,i)∈Om

qGmg − σmi =
∑

(i,j)∈Lm

fQmij , (59b)

∑
g:(g,i)∈Om

pGmg − ρmi + ∆Pm =
∑

(i,j)∈Lm

fPmij , (59c)

∑
g:(g,i)∈Om

qGmg − σmi + ∆Qm =
∑

(i,j)∈Lm

fQmij . (59d)

Complementarily, the frequency constraints (40) can be written
as (60) for each S ⊆ Ñ ,S 6= ∅, where the indicator function
IM is modeled using the big-M method and the bilinear terms
are replaced with their linear counterparts:

∆ωmin
N ≤ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(
pDmi − ρmi

))
+

∑
(m,k)∈L̃(S)

(1− Zmk)MN +
∑

(m,k)∈δ(S)

(Zmk)MN , (60a)

∆ωmax
N ≥ αS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(
pDmi − ρmi

))
−

∑
(m,k)∈L̃(S)

(1− Zmk)MN −
∑

(m,k)∈δ(S)

(Zmk)MN , (60b)

∆ωmin
ss ≤ βS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(
pDmi − ρmi

))
+

∑
(m,k)∈L̃(S)

(1− Zmk)Mss +
∑

(m,k)∈δ(S)

(Zmk)Mss, (60c)

∆ωmax
ss ≥ βS

∑
m∈B̃S

(
−∆P 0

m +
∑
i∈Bm

(
pDmi − ρmi

))
−

∑
(m,k)∈L̃(S)

(1− Zmk)Mss −
∑

(m,k)∈δ(S)

(Zmk)Mss. (60d)

4) Overall MISOCP Formulation: Before proceeding fur-
ther with the analysis, let us define the set R as the set of
constraints (22), (26), (27), (32)-(34), (36)-(39), (45b), (46b),
(47)-(51), (53), (54), (58), and (59). Recall that F is the
set of frequency constraints. Now, we can formally define
MISOCP(R,F), as the MISOCP relaxation of the multi-
µG resilient operation problem:

ψ=min
∑
m∈M

∑
i∈Bm

λV OLLmi (1− xmi) p̄Dmi

s.t. (22), (26), (27), (32)-(34), (36)-(39), (45b),
(46b), (47)-(51), (53), (54), (58)-(60).

It remains to deal with the exponential number of constraints
in F . This is the topic of the next section.

B. Cutting Plane Algorithm for Frequency Constraints

In this section, we propose a cutting plane approach to solve
MISOCP(R,F). The idea is to construct {Fk}k≥0, that is a
sequence of relaxations of the set F , and dynamically update
Fk to obtain stronger relaxations in each iteration. Recall that
the set F contains exponentially many frequency constraints.

With this aim in mind, let C1
S , C2

S , C3
S , and C4

S denote
respectively the constraints (60a), (60b), (60c), and (60d), for
a given connected component S of the linking grid, where
S ⊆ Ñ ,S 6= ∅. Moreover, let the graph Ñ ∗ represent
the configuration of the linking grid for a given solution
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Algorithm 1 Multi-µG resilient operation algorithm
1: Initialize k ← 0, Fk ← ∅, Flag ← NO
2: while Flag = NO do
3: Solve MISOCP(R,Fk) to obtain the graph Ñ ∗ rep-

resenting the optimal configuration of the linking grid
4: Compute Q = {Sυ1 ,Sυ2 , ...,SυN } as the set of con-

nected components of Ñ ∗
5: Flag ← YES
6: for υ = υ1 to υN do
7: for γ = 1 to 4 do
8: if Sυ violates CγSυ then
9: Flag ← NO

10: Fk ← Fk ∪ {CγSυ}
11: end if
12: end for
13: end for
14: k ← k + 1
15: end while

to MISOCP(R,Fk), and let Q = {Sυ1 ,Sυ2 , ...,SυN }
denote the set of connected components of Ñ ∗ where
{υ1, υ2, ..., υN} ⊆ {1, 2, ..., |B̃|}. For each component in Q,
we check the inequalities {CγS}

4
γ=1; if any frequency violation

is detected, the corresponding valid inequality will be added
to the set Fk. In other words, let A be the set of feasible
solutions to the problemMISOCP(R,F). In each iteration,
if an optimal solution of MISOCP(R,Fk) is in the set A,
we stop since we have already found an optimal solution to
MISOCP(R,F). Otherwise, we generate a cut and add it
to Fk to separate the point from the set A and obtain stronger
relaxations in the next iteration. Algorithm 1 provides the
details of the proposed cutting plane approach.

As can be seen, in Algorithm 1, we need a function to
return the connected components of the undirected graph Ñ ∗.
Recall that a connected component of an undirected graph is a
maximal connected subgraph of the graph. This function can
be implemented via depth-first or breadth-first algorithm. See
[19] for details.

Theorem 1. Algorithm 1 converges to an optimal solution of
the MISOCP-based multi-µG resilient operation problem, i.e.,
MISOCP(R,F), in a finite number of iterations.

Proof. Let x∗mi and Z∗mk be an optimal solution to the problem
MISOCP(R,F0) where i ∈ (Bm ∪ B̂m), m ∈M, (m, k) ∈
L̃, and F0 = ∅. If x∗mi and Z∗mk satisfy (60), then Algorithm 1
converges to the optimal solution in one iteration. Otherwise,
in each iteration, at least one constraint will be added to the set
Fk. We observe that the total number of constraints in (60) is
4r, where r is the number of possible connected components
of Ñ . Since each connected component is examined at most
once in this algorithm, the number of iterations needed for the
convergence of the algorithm is less than 4r.

VI. COMPUTATIONAL EXPERIMENTS

In this section, the performance of the proposed framework
for the multi-µG resilient operation problem is thoroughly
evaluated. All simulations are conducted on a 64-bit PC with

Intel Core i7 CPU 2.8 GHz processor and 16 GB RAM.
The algorithm is implemented in the GAMS IDE environment
[20]. We use BONMIN V1.8 [21] to solve MINLPs and
CPLEX V12.4 [22] to solve the MISOCPs. Moreover, we
use the 39-bus multi-µG network (depicted in Fig. 1) as
our test system. This network is composed of six DERs,
whose technical data are given in Table I. Feeders’ and loads’
data are adopted from different portions of a standard IEEE
distribution test system whose data can be found in [23]. To
have a more realistic study, five different load types (i.e.,
general, residential, agricultural, commercial, and industrial)
with different VOLLs are taken into account (see Fig. 5 in
[13]). Finally, the µGs’ dynamic data is given in Table II.

Table I
TECHNICAL DATA OF DERS

DERs
Parameters G1 G2 G3 G4 G5 G6

pG,min [×100 kW] 1 1 1 1 1 1

pG,max[×100 kW] 5 2 5 2 2 5

qG,min[×100 kVAr] −5 −2 −5 −2 −2 −5

qG,max[×100 kVAr] 5 2 5 2 2 5

RD\RD[×100 kW/min] 2 1 2 1 1 2

Table II
DYNAMIC PARAMETERS OF THE VSC CONTROLLER IN EACH µG

Parameter Value Parameter Value Parameter Value
H [sec.] 0.9 D 1 T ′ [sec.] 0.1
R 0.08 ∆ωN [Hz] 0.5 VBase[kV] 12.66
T [sec.] 0.008 ∆ωss [Hz] 0.1 SBase[MW] 5

We assume that all µGs in Fig. 1 were initially connected to
the main grid through the dashed lines (in red). Subsequent to
islanding, these lines along with the main circuit breaker trip.
The proposed MISOCP-based resilient operation approach
determines the optimal strategy which may include re-closing
the dashed lines and switching the dotted lines (in gray),
leading to different configurations for the distribution network.
In order to evaluate our framework, we compare it with the
following two schemes:
• MINLP-Based Scheme: In this scheme, we follow

our resilient operation scheme; however, we use
MINLP(X ,F) as the decision support tool in Algo-
rithm 1.

• Conventional UFLS Scheme: In this scheme, subsequent
to islanding of the distribution network, each µG indi-
vidually enters the island mode where the conventional
UFLS relays will curtail the necessary blocks of loads
until reaching the equilibrium point. The settings of these
relays are obtained from [13].

A. Comparison with the MINLP-Based Scheme

1) Solution and Computation Time: Table III provides a
comparison between the MINLP-based and MISOCP-based
schemes considering different severities for the islanding event
(we define severity as the amount of power flow from the
main grid to the distribution network before the islanding). The
computation times in this table are obtained using a relative
optimality criterion (i.e., Optcr) of zero.
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As can be seen, although the computation time is consid-
erably diminished in the MISOCP-based model, the solution
quality (in terms of load curtailment) is the same, and this is
highly effective in precarious situations such as the emergency
management of distribution networks, since prompt measures
can keep electromechanical dynamics away from becoming
stability threatening.

Table III
COMPARISON BETWEEN THE MISOCP AND MINLP MODELS

Islanding
Severity

[kW]

MISOCP-Based Scheme MINLP-Based Scheme
Curtailment

[kW]
Computation
time [sec.]

Curtailment
[kW]

Computation
time [sec.]

2700 2248.4 57.21 2248.8 2978.8
3200 2725 52.74 2725 7185.7
3700 3208.4 73.58 3209.4 9593.5

2) Convergence: In order to see more details about the con-
vergence of Algorithm 1, let us analyze the second islanding
event (with the severity of 3200 kW). For this event, Table IV
provides the objective function value, the cardinality of the
set Fk, the amount of load shedding, the configuration of the
multi-µG network, and the elapsed time in each iteration of
the algorithm while solving MISOCP(R,F). Accordingly,
the algorithm converges in 15 iterations. In each iteration,
a set of cuts are generated to separate a given solution of
MISOCP(R,Fk), that is a mixed integer solution, from the
set A. This separation in each iteration leads to an interplay
between load shedding adjustments and network topology
control, demonstrated in the 4th and 5th columns of Table IV.
It must be emphasized that when a mixed integer solution is
cut off, the corresponding integer solution (i.e., the projection
onto the space of integer variables) may not be cut off. For
instance, in the 7th iteration in in Table IV, the amount of
load shedding is 2295 kW and the connected edges of the
linking grid are l1, l3, and l5 (see Fig. 1(b)). Although a
valid inequality cuts off this mixed integer solution in the next
iteration, the corresponding integer solution appears again in
the 15th iteration with a different amount of load shedding.

As another interesting result, in the eighth iteration, the
distribution network is partitioned into two sub-systems and
the objective function is increased by 8.5%. Eventually, in the
15th iteration, the optimal resilience improvement strategy is
achieved while the distribution system is reconfigured as one
connected component.

For the sake of comparison, Table V provides the outputs of
Algorithm 1 while solvingMINLP(X ,F). As can be seen,
the algorithm converges in a more number of iterations and
the computation time of each iteration is considerably more
than that of the MISOCP-based model. The final solutions (the
objective function, load curtailment, and configuration of the
linking grid), nevertheless, are quite the same as the ones in
Table IV.

B. Comparison with the Conventional UFLS Scheme

Fig. 4 provides a comparison between the MISOCP-based
scheme and the conventional UFLS scheme while they are
coping with the second islanding event (with severity of
3200 kW). To have a more realistic result, we assume the
communication latency to be 100 ms in the proposed scheme.

Table IV
CONVERGENCE PROCESS OF THE PROPOSED ALGORITHM WHILE

SOLVINGMISOCP(R,F)

k
ψ

[×100 $]
|Fk|

Curtailment
[×100 kW]

Connected
edges of Ñ

Elapsed
time/iter

[sec.]
0 1579.09 0 22.98 l1, l2, l3 6.0
1 1579.09 1 22.93 l2, l4, l5 3.8
2 1579.09 2 22.91 l2, l3, l4 4.0
3 1579.09 3 23.07 l1, l3, l4 4.6
4 1579.09 4 22.87 l3, l4, l5 3.2
5 1579.09 5 22.93 l1, l2, l5 2.9
6 1579.09 6 23.03 l1, l2, l4 2.6
7 1579.09 7 22.95 l1, l3, l5 2.7
8 1714.69 8 23.40 l2, l3, l5 1.6
9 2069.38 10 24.29 l1, l4 5.9
10 2081.35 12 24.92 l1, l5 3.9
11 2081.35 13 24.92 l4, l5 2.0
12 2086.23 14 24.11 l2, l5 2.4
13 2086.23 15 24.15 l3, l5 2.2
14 2086.23 16 24.07 l2, l3 2.7
15 2235.96 17 27.25 l1, l3, l5 2.4

Table V
CONVERGENCE PROCESS OF THE PROPOSED ALGORITHM WHILE

SOLVINGMINLP(X ,F)

k
ϑ

[×100 $]
|Fk|

Curtailment
[×100 kW]

Connected
edges of Ñ

Elapsed
time/iter

[sec.]
0 1579.09 0 22.89 l1, l3, l4 664.2
1 1579.09 1 22.88 l1, l2, l4 478.1
2 1579.09 2 22.87 l1, l2, l3, l5 391.9
3 1579.09 3 22.86 l1, l2, l5 329.8
4 1579.09 4 22.87 l2, l3, l4, l5 341.4
5 1579.09 5 22.84 l2, l4, l5 246.3
6 1579.09 6 22.86 l1, l3, l5 285.5
7 1579.09 7 22.83 l3, l4, l5 185.0
8 1579.09 8 22.86 l1, l2, l3 165.0
9 1579.09 9 22.86 l2, l3, l4 124.1
10 1714.69 10 23.14 l2, l3, l5 291.7
11 2069.38 12 24.06 l1, l4 516.6
12 2081.35 14 24.68 l1, l5 387.5
13 2081.35 15 24.71 l4, l5 353.4
14 2086.23 16 23.86 l2, l5 322.2
15 2086.23 17 23.88 l3, l5 530.0
16 2086.23 18 23.89 l2, l3 172.6
17 2235.96 19 27.25 l1, l3, l4 1400.7

We also consider the intentional delay of the UFLS relays
to be 100 ms. Since the distribution network is partitioned
into four µGs in the conventional UFLS scheme, this figure
compares the amount of load shedding, nadir frequency, and
steady state frequency in each µG (denoted by m1 to m4), on
the one hand, and the same indices in the multi-µG network
which is obtained from the proposed MISOCP-based scheme,
on the other hand.

Accordingly, the total amount of load shedding in our
proposed scheme is 2725 kW, while the steady state and
nadir frequencies are remained within the permissible range.
In comparison, the total amount of load shedding in the
conventional scheme is 3700 kW (even more than the initial
power deficiency), and the frequency of the µGs violates the
safe range. Specifically, in m3, the violation of frequency is
more serious, and the conventional scheme fails to maintain
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Figure 4. Comparison between the proposed MISOCP-based and conventional
UFLS schemes for an islanding event with severity of 3200 kW. Permissible
ranges of nadir and steady state frequencies are shown by horizontal bars.

the frequency stability of the network. The main reason for this
observation is the rigidity of the conventional UFLS scheme
in dealing with different contingencies. In this scheme, load
shedding is implemented in several steps with fixed sizes,
regardless of the intensity of the islanding. Therefore, it can
be inferred that the conventional method sheds non-optimal
amount of loads encountering islanding events. These results
illustrate that the proposed method is capable of preserving the
distribution network from collapsing and moving it to a new
steady state and stable condition. It is worth mentioning that,
aside from the COI frequency, keeping the bus voltages and
line flows within the permissible range in our proposed scheme
would guarantee a secure operation following the islanding
process, which is not considered in the conventional scheme.

VII. CONCLUSIONS

In this paper, we propose a novel framework for the near
real-time operation as well as the real-time control of multi-
µG networks. Our framework provides the optimal power flow,
optimal load shedding, and optimal topology reconfiguration,
while frequency dynamics and AC power flow limitations
are taken into account. An exact reformulation of frequency
constraints in a cutting plane algorithm with tight MISOCP
relaxations is established, which significantly speeds up com-
putation and achieves near optimal solution. To the best of
our knowledge, this comprehensive optimization and control
framework for the frequency stability of multi-µGs is proposed
for the first time in the literature. Our numerical experiments
further illustrate that the proposed emergency control scheme
can successfully monitor, verify, and act to guarantee that the
multi-µG network remains within the operational limits during
post-islanding frequency dynamics. It is practical for real-
world applications and outperforms the conventional UFLS
scheme in terms of load shedding amount, number of curtailed
customers, and frequency stability.
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